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Abstract. A two-dimensional gas of non-interacting quasiparticles in a nearly periodic potential
and a perpendicular magnetic field is studied. The potential is a superposition of a periodic
potential, induced, for example, by a charge-density wave or a vortex lattice of a type-II
superconductor, and a weak random potential due to impurities. Approximating this model
by Dirac fermions with random mass, random energy, and random vector potential, we evaluate
the density of states and the Hall conductivity using a self-consistent approximation. We obtain
a singular average density of statesρ(E) ≈ ρ0 + |E|α , whereα decreases with the strength of
the randomness. The Hall conductivity has a plateau which is destroyed for strong tunnelling
through the saddle points of the nearly periodic potential.

1. Introduction

A two-dimensional system of non-interacting quasiparticles is considered in a periodic
potential with a strong perpendicular magnetic field. The periodic potential can be
understood as a pinned charge-density wave, formed in a two-dimensional low-density
electron gas due to Coulomb interaction. This model is related to a possible formation of
a Wigner crystal in a two-dimensional electron gas with a perpendicular magnetic field,
a problem which has attracted considerable attention recently [1, 2]. Another possible
realization of the model is a system of quasiparticles in a layered type-II superconductor
in the presence of a magnetic field, where a periodic structure due to the vortex lattice
in the Abrikosov phase arises. Due to impurities, the periodicity of the potential is not
perfect in a real system, and we have to incorporate weak random fluctuations of the
potential. Therefore, the total potential is a superposition of the periodic potential and weak
randomness, creating a nearly periodic potential.

We start with a continuum model which we map to the network model, following
the ideas of Chalker and Coddington [3] for the quantum Hall system. The resulting
model is defined by an evolution operator for the quasiparticles on a two-dimensional
lattice, where the latter is an approximation of the nearly periodic potential. Two types of
scattering are possible. One describes the scattering along the equipotential lines, while the
other corresponds to the scattering through the saddle points of the potential. This model
undergoes a transition between Hall plateaux of the integer quantum Hall effect, the quantum
Hall transition (QHT), when the scattering through the saddle points exceeds a critical value.
The network model has been very successful as a starting point for numerical studies of
the QHT [3–6]. Unfortunately, the model is not easily accessible to analytic methods due
to its internal lattice structure. However, a large-scale approximation, for weak disorder,
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sufficient for the investigation of transport properties, has been applied to the network model
by Ho and Chalker [7]. They found that the network model is equivalent to a model of
Dirac fermions. This result indicates that the network model is similar to the tight-binding
model with half a flux quantum per plaquette, where the large-scale approximation also
leads to Dirac fermions [8–10]. However, the corresponding randomness in the resulting
Dirac fermions is different: the tight-binding model with a random potential leads to Dirac
fermions with a random mass whereas the network model of the nearly periodic potential
leads to Dirac fermions with a random vector potential and a random energy.

Dirac fermions with randomness can be treated by field theoretical methods [9, 11, 12].
A particular case is the purely random vector potential, which can be solved exactly by
bosonization [9, 13]. Other types of randomness, to the best of our knowledge, cannot be
treated in this way. Therefore, we will apply a self-consistent approximation scheme. In
order to control our approximate calculation we will compare it with the exact result of
references [9, 13].

The paper is organized as follows. In section 2 we introduce the continuum model, and
derive a network model of quasiparticle loops, which is equivalent to the network model
of Chalker and Coddington. In section 2.1 we briefly recall a tight-binding approximation
of the periodic potential [9, 14]. The large-scale approximation of the network by Dirac
fermions is discussed in section 2.2. As physical quantities, we define the average DOS
and the Hall conductivityσxy in terms of the Green’s function. The main part of our
calculation is presented in section 3, where a self-consistent approximation for the average
Green’s function is worked out, as well as its consequences for the average DOS and the
Hall conductivity. Finally, we discuss our results in section 4.

2. The model and related physical quantities

We consider the dynamics of a particle with chargee in the potentialV (x, y) =
V0 cos(πax) cos(πay)+ δV (x, y), whereδV (x, y) represents a weakly fluctuating disorder
potential. We start with a discussion of the classical motion, taking into account the Lorentz
force created by the perpendicular fieldB = (0, 0, B):

M
d2r

dt2
+ e
c
B × dr

dt
+∇V = 0 (1)

wherer = (x, y,0) is the coordinate vector. For a sufficiently small massM the first term
can be neglected, and the resulting first-order differential equations show that the particle
follows the equipotential lines of the potential:

d

dt

(
x

y

)
= c

eB

(
∂V/∂y

−∂V/∂x
)
. (2)

The approximation by the first-order differential equation is equivalent to neglecting the
cyclotron motion of the particle and reducing the dynamics to the motion of the guiding
centre.

For B > 0 a particle with energyE 6= 0 follows closed anticlockwise orbits around
a hill (E > 0) or clockwise orbits around a well (E < 0) (figure 1). Only a particle
with energyE = 0 can travel through the whole two-dimensional space because there are
extended equipotential lines atx = (2k + 1)/2a or at y = (2k + 1)/2a (k = 0, 1, . . .). The
behaviour nearE = 0 can be quantized using a lattice approximation. This approximation
is based on the orbits of quasiparticles at a given energyE which form a network of loops.
Quantum effects are described by tunnelling between these loops in regions where the loops
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Figure 1. Equipotential lines ofV (x, y) = V0 cos(πx) cos(πy) (arbitrary units).
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Figure 2. A network of equipotential lines for two fixed energies±E close to zero. The arrows
indicate the directions of the quasiparticle motion due to the magnetic fieldB > 0.

are close to each other, i.e. at the saddle points of the potential. ForE < 0 the tunnelling
occurs between the loops in figure 2 whose centres (minima of the potential) are located
at (x, y) and (x ± 1, y ± 1). For E > 0 we have a complementary situation in which the
preferred loops appear with the opposite current direction. Apart from this difference, the
subsequent analysis can be applied to this case as well. We will considerE < 0 in the
following.

2.1. Lattice approximations

The tunnelling can be expressed in terms of discretized scattering processes of effective
quasiparticle positions at the centres of the loop edges, enumerated 1, . . . ,4 in figure 2.
The scattering is characterized by a scattering parameterβ (0 6 β 6 π/4), determined by
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V0 andE. As regards the loop at(x, y) in figure 2, there is a quasiparticle state

Ψ(t) ≡ (91(t, x, y),93(t, x, y),92(t, x, y),94(t, x, y))

at time t whose components are associated with the edgesj of the loop. At the later time
t + 1 this state can be scattered along the loop, or can tunnel through one of the four
saddle points to the loops at(x ± 1, y ± 1). For example, the component91(t, x, y) can
be scattered either to92(t + 1, x, y) with rateC = cosβ, giving rise to a phaseφ2, or can
tunnel to94(t +1, x+1, y+1) with rateS = sinβ, giving rise to a phaseφ4. All possible
processes can be combined as follows:

Ψ(t + 1) =
(

0 M
N 0

)
Ψ(t) (3)

where

M =
(
Seiφ1tx−t

y
+ Ceiφ1

Ceiφ3 −Seiφ3tx+t
y
−

)
N =

(
Ceiφ2 Seiφ2tx+t

y
+

−Seiφ4tx−t
y
− Ceiφ4

)
(4)

and tx+ (ty−), for example, are lattice shift operators in the positive (negative)x- (y-)
direction. The phasesφ1,. . . , φ4 are associated with the centres of the loop edges. The
weak random potentialδV induces weakly fluctuating phases with〈φj 〉 = 0 for j = 1, 2, 3
and〈φ4〉 = π . This choice ensures the presence of half a flux quantum per current loop on
average. (Notice that the original network model [3] has strong disorder due to a uniform
distribution of the phasesφj on the interval [0, 2π). It is not clear whether our model
with weak disorder belongs to the same universality class. Since strong fluctuations of
the phase correspond to strong fluctuations of the external magnetic field, the fact that a
random magnetic field is a relevant perturbation [15] indicates that the two models may be
qualitatively different.) The random potentialδV also affects the tunnelling between the
loops. This induces randomness in the lattice shift operatorst

x,y
± . The latter are statistically

independent for different nearest-neighbour pairs on the lattice. We believe thatβ > π/4 is
not realistic for the physical model because this describes a situation where the quasiparticles
‘prefer’ to tunnel through the saddle points rather than go along the equipotential lines.

The (discrete) time evolution of the quasiparticle state on a loop can also be described
by the evolution operatorW asΨ(t + 2) =WΨ(t) [7], with

W =
(

0 M
N 0

)2

=
(

MN 0
0 NM

)
. (5)

Assuming (discrete) translational invariance (i.e.δV = 0 in the original model), we can
diagonalize the scattering matrix by applying a Fourier transformation(x, y) → (k1, k2).
Thus we find the eigenvalues ofW,

λ1/2(k1, k2) = 2SC cosk1 cosk2± i
√

1− 4S2C2 cos2 k1 cos2 k2. (6)

The corresponding dispersion relation,E1/2(k1, k2), obtained viaλ1/2 = exp(−iE1/2), has
a gap aroundE = 0 depending onβ (see also [7]). The gap vanishes atk1 = k2 = 0,±π
for β = π/4, i.e. forC = S = 1/

√
2. Thus the quantum model reflects the behaviour of

the classical model, where infinite equipotential lines exist only at zero energy. The effect
of disorder on this behaviour will be studied subsequently.

We briefly discuss an alternative lattice approximation of the almost periodic potential.
It is based on the tight-binding representation of the continuous model. For this purpose we
regard the minima,V (x, y) = −V0, and the maxima,V (x, y) = V0, of the periodic potential
as a lattice—see figure 3. Quasiparticles can hop between neighbouring lattice points with
hopping ratet , i.e. for hopping between a maximum and a minimum. Moreover, it is
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Figure 3. The tight-binding approximation of the periodic potential, wheret is the nearest-
neighbour andt ′ the next-nearest-neighbour hopping rate.

reasonable to take the hopping between next-nearest neighbours—which are either pairs of
maxima or pairs of minima—into account also and associate a hopping ratet ′ with this
process. The magnetic field leads again to a Peierls phase factor in each of the hopping
terms [14]. Disorder can be introduced by adding random fluctuationsδV to the lattice
points. This lattice approximation differs from the above network model because there are
two types of hopping now. The nearest-neighbour hopping between a maximum and a
minimum has been excluded in the network approximation, since tunnelling is considered
only between states at the same energy.

2.2. Large-scale approximation: Dirac fermions

We are interested in the properties of the quasiparticles on large scales. Therefore, we
consider the large-scale approximation of the evolution operatorW by expanding the non-
local part in a Taylor expansiontx±f (r) = tx±(r)f (r ± aex) ≈ tx±(r)[f (r) ± a∇xf (r)];
for simplicity we seta = 1 in the following. The evolution operator then reads, for
β = π/4+ δβ, with |δβ| � 1,

MN ≈ 1+
(

iφ̄ −∇x + iAx 2δβ +∇y − iAy
−2δβ +∇y − iAy iφ̄ +∇x − iAx

)
+ random terms fromtx,y± (7)

and

NM ≈ 1+
(

iφ̄ +∇y − iAy −2δβ −∇x + iAx
2δβ −∇x + iAx iφ̄ −∇y + iAy

)
+ random terms fromtx,y± (8)

with the effective random vector potential componentsAx = (φ1− φ3)/2, Ay = (φ4− π −
φ2)/2, and with φ̄ = (φ1 + · · · + φ4 − π)/2. We can express the results (7), (8) using
two-dimensional Dirac HamiltoniansHMN andHNM , defined throughMN ≈ 1− iHMN and
NM ≈ 1− iHNM , where

HMN = −2δβ σ2− (i∇x + Ax)σ3+ (i∇y + Ay)σ1+ H̃MN
HNM = 2δβ σ2+ (i∇y + Ay)σ3− (i∇x + Ax)σ1+ H̃NM

(9)

with Pauli matricesσj . The termsH̃MN , H̃NM are contributions from the random operators
t
x,y
± . Herem = 2δβ appears as a Dirac mass. Sinceδβ 6 0, the Dirac mass cannot be

positive. Moreover, it is convenient to rotate the 2× 2 matricesHMN andHNM such that
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the mass term is in the diagonal. This leads to

HMN = mσ3− (i∇x + Ax)σ1− (i∇y + Ay)σ2+ H̃MN
HNM = mσ3+ (i∇x + Ax)σ1+ (i∇y + Ay)σ2+ H̃NM.

(10)

The random terms, related to the random phasesφj and the random factorstx,y± , are expanded
in terms of Pauli matrices as

∑3
l=0 σlVl , where l = 1, 2 are contributions to the random

vector potential,l = 0 is the contribution to the random energy, andl = 3 the contribution
to the random mass. (σ0 is the 2× 2 unit matrix.) The corresponding expansion forHNM
is given by

∑3
l=0 σlV

′
l . It is assumed thatVl andV ′l have a Gaussian distribution with zero

mean and correlations

〈Vl,rVl′,r ′ 〉V = 〈V ′l,rV ′l′,r ′ 〉V ′ = δrr ′δll′gl (11)

wherer, r ′ denote the lattice points. In principle,Vl andV ′l are correlated. However, these
correlations do not play a role here because the Green’s function is block diagonal with
respect toVl andV ′l .

We emphasize that a non-compact continuous symmetry exists in the case where
g0 = g3 = 0 (a pure random vector potential) andm = 0; that is,

HMN = [(1+ ζ 2)1/2σ0+ ζσ3]HMN [(1+ ζ 2)1/2σ0+ ζσ3] (12)

and similarly forHNM , with −∞ < ζ <∞. This symmetry indicates that the pure random
vector potential is qualitatively different from the general case withg0 + g3 > 0, e.g. the
symmetry is reduced to a discrete one withζ = i for averages of physical quantities if
m = E = 0.

The time evolution of the quasiparticles in the network is given by iterating the time
step operatorW. This requires the evaluation of〈Wn〉V for large values ofn, since we
are interested in the long-time behaviour. We Fourier transformWn first, and later average
with respect to the random potentialV . In a first step,∑

n>0

Wneinω = (1−Weiω)−1 (13)

where the frequencyω has an infinitesimal imaginary partε > 0: ω = E+iε. Now we return
to the Dirac Hamiltonian to determine the large-scale behaviour. For small frequencies we
obtain the Green’s function of Dirac fermions:

(1−Weiω)−1 ≈
(

iHMN − iω 0
0 iHNM − iω

)−1

≡ iG(ω). (14)

The evaluation of〈G(ω)〉V in a self-consistent approach is described below (section 3).

2.3. The density of states and Hall conductivity

According to standard Green’s function theory, the average DOS at a given energyE is
obtained from the Green’s functionG as

ρ(m,E) = 1

π
lim
ε→0
〈Im[G11,rr (E + iε)+G22,rr (E + iε)]〉V . (15)

The DOS of a pure system (gl = 0) is linear aroundE = 0 [9] and vanishes atE = 0 for
all values ofm.

The current density in a Dirac model can be calculated directly from the Kubo formula
[9] or from the response to an external static vector potentialqy [16]. The effect ofqy
is a change of the boundary conditions in they-direction, a concept extensively used in
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numerical investigations of Anderson localization to study the existence of delocalized states
[17]. The response to the vector potential gives the Hall conductivityσxy in terms of Green’s
functions [9, 16]:

σxy = e2

h

i

qy

∫ ∑
r ′

(
Tr2
{
σx(HMN − iz− E)−1

r,r ′(HMN − iz− E − qyσy)−1
r ′,r
}

+ Tr2
{
σx(HNM − iz− E)−1

r,r ′(HNM − iz− E − qyσy)−1
r ′,r
}) dz

2π
. (16)

This gives, in the absence of disorder and with periodic boundary conditions, and for
qy → 0,

σxy = e2

h
sgn(−m)2(|m| − |E|) (17)

where2 is the step function. Thus the Hall conductivity has the plateau valuee2/h at
E = 0, sincem 6 0 for β 6 π/4, while it is undefined atm = 0. This behaviour of the
transport quantityσxy is unphysical, and will be replaced by a continuous behaviour when
we take disorder into account: then the DOS is found to vanish atE = 0 for all m, which
indicates that the Hall current flows on the boundary. Therefore, the result (17) depends
strongly on the choice of the boundary conditions [5, 7]; conditions other than periodic can
suppressσxy . For the tight-binding model of section 2.1,σxy was determined forE = 0
[14] to be

σxy = e2

h
2(t ′2− V 2

0 ). (18)

Comparing this with the result (17), we see that the network approximation is similar to the
tight-binding approximation provided thatt ′2 > V 2

0 .
For the special case of a random vector potential we can evaluate the dissipative

conductivity and the localization length in a simple way. Using the identity (which holds
for m = 0)

G(−ω) = −σ3G(ω)σ3 (19)

we may express the two-particle Green’s function〈G(ω)G(ω∗)〉 as a product of one-particle
Green’s functions on thesamecomplex half-plane. As a consequence of this property,
the critical properties of the two-particle Green’s function are identical to those of the
one-particle Green’s function. This explains the finding that the critical exponent of the
localization length is identical to the decay exponent of〈G(ω)〉 in an explicit calculation [9].

3. Self-consistent approximation

The full Green’s function〈G〉V can be related to the Green’s functionG0 in the absence of
randomness

G0(ω) =
(
ω − 〈HMN 〉V 0

0 ω − 〈HNM〉V
)−1

(20)

through Dyson’s equation:

〈G〉V = G0+G06〈G〉V . (21)

The self-energy6, in lowest-order perturbation theory, is given by6 ≈ 〈VG0V 〉V .
Expanding6 in terms of Pauli matrices,6 = 60 + 61σ1 + 62σ2 + 63σ3 and, taking
into account that〈G〉−1

V = G−1
0 − 6, we see that61 and62 shift the gradient operators
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in 〈HMN 〉V and 〈HNM〉V . Since the parity is conserved forG0 as well as for〈G〉V , these
contributions must vanish. The remaining contributions,60 ≡ −iη and63 ≡ −ms , can be
evaluated in a self-consistent approximation, where we use the second order in perturbation
theory, and replaceG0 in the expression for6 by (G−1

0 −6)−1, with the result

6 = 〈V (G−1
0 −6)−1V 〉V . (22)

With gij = gi + gj , this self-consistent equation leads to two coupled equations:

ms = m (g12− g03)I

1− (g12− g03)I
(23)

and

η = (η − iω)gI (24)

with the integral

I = 2
∫

[(m+ms)2+ (η − iω)2+ k2]−1 d2k

(2π)2
= 1

2π
ln

(
1+ λ2

(m+ms)2+ (η − iω)2

)
.

(25)

We introducedλ as an ultra-violet cut-off, andg = g0+ · · · + g3.
For ω = 0, there are two solutions of (24): one withη = 0, and a second one with

η 6= 0 andI = g−1. The latter implies with (23) a renormalization of the Dirac mass,

m̄ ≡ m+ms = m g

2g03
(26)

and with (25), we find

η2 = e−2π/g −m2(g/2g03)
2. (27)

The multiplicative renormalization of the Dirac mass in equation (26) diverges asg03→ 0.
This indicates a special behaviour for a pure random vector potential. Although this case
is not interesting in terms of the network model, it has been discussed extensively in the
literature [9, 11, 18].

For m = 0 (ω 6= 0) we obtain with equations (24) and (25) an equation which deter-
minesη:

e2πη/g(η−iω) = 1+ λ2

(η − iω)2
. (28)

Given η, we can evaluate the DOS as

ρ(m = 0, E) = 1

g
Re(η) (29)

which for E = 0 vanishes ifm2 > m2
c , where

mc = ±2g03

g
e−π/g (30)

where we setλ = 1 for simplicity. In this case the DOS as a function ofm follows
a semi-circle (equation (27)), multiplied byg/2g03, with the maximum atm = 0 given
by ρ(m = 0, E = 0) = e−π/g/g. The radius of the semi-circle is 2(g03/g)e−π/g, and
thus vanishes forg03 → 0. This means that the DOS vanishes for a pure random vector
potential (g03 = 0) for anym 6= 0, but jumps toρ(m = 0) = e−π/g12/g12 at m = 0. This
again indicates a singular behaviour (instability) for the pure random vector potential, at
least in terms of our self-consistent approximation [19]. Such behaviour was also found in
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Figure 4. The density of states for weak (g = 0.2) and intermediate (g = 0.7) disorder with
the scattering parameterβ = π/4. The minimum atE = 0 is e−π/g/g (see the text).

perturbation theory around the (integrable) case (a random vector potential only), where
infinitely many relevant operators appear due to the contribution of the random Dirac
mass [11].

The density of statesρ(m = 0, E) behaves smoothly forE 6= 0, as shown in figure 4.
It shows an effective power law, e−π/g/g + |E|α with a cut-off at largeE (depending on
λ), except for very small and very large energies. As can be seen in figure 4, the exponent
decreases, starting atα = 1 for g = 0, with increasingg.

The Hall conductivity can also be calculated within the self-consistent approximation.
For this purpose we replace the Green’s function in equation (16) by(G−1

0 − 6)−1. This
gives an expression identical to that found for the random Dirac mass [10], except thatmc
is replaced by the new critical mass (30):

σxy ≈ e2

h
sgn(−m)

[
1− (2/π)arctan

(√
m2
c/m

2− 1

)
2(m2

c −m2)

]
. (31)

This describes a Hall plateau with a continuous decrease to zero near the critical scattering
parameterβc = π/4, which implies that disorder changes the (unphysical) discontinuity of
the pure system (17) to a more realistic behaviour. However, forg03 = 0, g > 0, the critical
massmc vanishes. Thusσxy is undefined form = mc, like for the pure case. Consequently,
the random vector potential alone is not sufficient to create a continuous behaviour of
σxy . However, since there exist exact calculations for the random vector potential [9] and
numerical results [18], we wish to compare our self-consistent approach with those. In order
to avoid problems with singularities atm = 0 we assumem > 0 and setm→ 0 only at the
end. In particular, we have to choose that solution of equation (24) which vanishes with
vanishing frequencyω. Going back to the self-consistent equation (23), we can expressI

of equation (25) in terms of the renormalized massm̄ as

I = (1− 1/x)/g12



6758 U Eckern and K Ziegler

wherex = m̄/m. Consequently,η—compare with equation (24)—is given by

η = iω(1− x).
From equations (23), (25), we obtain

x =
{

1− g12

2π
ln

[
1+ 1

x2(m2− ω2)

]}−1

. (32)

This implies, withω2 . m2,

x ∼
{

1+ g12

2π
ln[x2(m2− ω2)]

}−1

. (33)

Assuming weak disorder (g12� 1) we exponentiate the right-hand side to get

x ∼ [x2(m2− ω2)]−g12/2π (34)

and

x ∼ (m2− ω2)−g12/[2π(1+g12/π)] . (35)

The decay lengthξ of the average Green’s function reads in terms of the self-consistent
approximation (in units of the lattice constant)

ξ = [m̄2+ (η − iω)2]−1/2. (36)

Thus, from (35) and insertinḡm, η = iω(1− x), we find

ξ ∼ (m2− ω2)−1/2(1+g12/π). (37)

This agrees with the earlier results [9, 13], obtained from a renormalization group argument
and a bosonization approach, respectively. In the latter it is not restricted to weak disorder,
but holds true for all values ofg12.

4. Discussion and conclusions

Starting from a two-dimensional system of non-interacting quasiparticles in an almost
periodic potential with a magnetic field, we have derived an effective model for large-
scale properties. The latter is a model of 2D Dirac fermions with random mass, random
energy and random vector potential. Our derivation is analogous to that of Ho and Chalker
for a random potential [7]. This model shows a gap due to the periodic potential, which
disappears if the rates for clockwise and anticlockwise scattering of quasiparticles are equal.
The gap is proportional to the Dirac mass. The average Green’s function of the random
Dirac model has been evaluated in a self-consistent approximation. The latter is equivalent
to the saddle-point (or large-N ) approximation of the model [20]. It gives a self-energy
which consists of a multiplicative renormalization of the average Dirac mass,m→ mg/2g03,
and a spontaneous creation of a complex self-energy.

In terms of the self-consistent approximation, only the combinationsg03 andg12 enter
the results. This supports the conjecture [4] that the randomness of the scattering rates at
the saddle points is irrelevant (i.e. there is no qualitative difference betweeng3 > 0 and
g3 = 0) as long asg0 > 0. In other words, the randomness of the phases is sufficient for
the qualitative description of the QHT, at least for the DOS and Hall conductivity.

The mass renormalization is only a factor 1/2 in the absence of a random vector potential
(g12 = 0), but it grows withg12, andη is a function of the renormalized mass and the (real)
energyE. The average DOS is proportional to the real part ofη. It shows a semi-circular
behaviour with widthmc, given in equation (30). This width vanishes if only a random
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vector potential is present, indicating a qualitatively different situation. As a function ofE,
it describes an effective power law, unlessE is very small. The exponent of the power law
α decreases with disorder strength, starting atα = 1 for the pure system. In the case of
very weak disorder (g ∼ 0), we take thegth power of equation (28), and expand the result
in powers ofg, with the result

η = Eg

2π i
ln[1− λ2/(E + iε)2] +O(g2). (38)

This yields with equation (29) the well-known linear behaviour of the DOS forE2 < λ2:

ρ(m = 0, E) = |E|
2
2(λ2− E2)+O(g). (39)

The overall behaviour of the DOS is in very good agreement with a numerical result for a
similar Dirac model [18]. Furthermore, a non-zero DOS near the QHT, whereσxy deviates
from the Hall plateau valuee2/h, as found by us, also agrees with numerical observations
[21, 22]. The Hall conductivityσxy has a plateau in the regime where scattering is dominated
by states localized on the loops. However, in the absence of disorder,σxy is not defined
if scattering is equally probable along the loops and through the saddle points (β = π/4).
This problem disappears in the presence of disorder, sinceσxy then changes continuously
from the plateau valueσxy = e2/h to σxy = 0 atβ = π/4.

We conclude that the special properties of the pure system are cured by the randomness:
the vanishing average DOS atE = 0 is elevated to a non-zero value. Although this value is
exponentially small, it indicates that a band of states exist where the quasiparticle can tunnel
with high probability through the saddle points of the periodic potential (i.e. nearβ = π/4).
The tunnelling, which can be understood as quantum percolation, obviously destroys the
plateau of the Hall conductivity. At least for the case of a random Dirac mass, it is known
that part of this band consists of delocalized states [12], leading to a non-zero conductivity
σxx ≈ (e2/hπ)/(1+ g/2π) [23]. Numerical calculations [3–5] indicate that delocalized
states also exist in the network model. Moreover, for the random vector potential we found
a divergent localization length whenm2 → ω2 within our self-consistent approach. All
these results are strong hints that there are delocalized states for the fully random Dirac
Hamiltonian, in the regime of strong tunnelling through the saddle points of the nearly
periodic potential.
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